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Behavior of a transonic stream of gas perturbed by a body of revolution is inves- 

tigated at some distance from that body in the hodograph plane. An asymptotic 
expansion of the Legendre potential is derived. 

The flow of a perfect gas stream, whose velocity at infinity is constant and 
close to the speed of sound, past a slender body of revolution is considered. The 
problem of attenuation of perturbations induced by the body of revolution in the 
transonic stream in the region upstream of compression shocks at some distance 
from the body is analyzed. 

An asymptotic expansion of the velocity potential in the considered region 
was obtained in Cl] in variables of the physical plane of flow. However hodo- 
graph variables proved to be more convenient in a number of problems, since 
the equation of shock wave in these variables becomes determinate. Because 
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of this the asymptotics of an axisymmetric transonic stream is derived here in 
hodograph variables. The approximate K&man equation for the potential of per- 
turbed velocity is used in the analysis which is based on the method developed 
in [Z]. An asymptotic expansion of the Legendre potential which has the requi- 

red property of regularity in the hodograph plane is derived. The problem of 

retaining the regularity of obtained solution in its mapping onto the physical 

plane is investigated. 

1. Let the velocity u, at infinity of a stream of perfect gas flowing past a body of 

revolution be close to the speed of sound a,. We introduce a cylindrical system of co- 
ordinates 2, r, directing the z-axis along the axis of symmetry. We assume the motion 

of gas to be everywhere isentropic and use the approximate Karmiln equation [3] for the 
potential CD (5, r) of perturbed velocity 

aa, i320 --- 
ax &I? + (1.1) 

for defining the flow in the considered region. In this equation function 0 (z, r) and 

the variables x and r are taken in the dimensionless form. Equation (1.1) is derived 
on the assumption that the potential @ (z, r) is a small addition to the potential a,~ 
of the uniform stream whose velocity is equal to the critical speed a,. 

The principal term of the asymptotic law of attenuation of perturbations induced in 

a uniform sonic stream by a body of revolution is represented by the self-similar func- 
tion [4 - 61 

@a (2. r) = r-2f’~fo (E), E = r / r?” (1.2) 

In the case of transonic velocity of the unperturbed stream,function @, (5, r) is also 
used as the principal term in the solution of the K&m& equation in the problem offlow 
past bodies of revolution, and the solution is sought in the form 

Q, (x7 r> = QO (z, r) + 0, (5, r) (1.3) 

with the assumption that in the investigated region 1 @* 1 (( 1 m. 1. 
We pass in Eq. (1.1) to the hodograph variables u = mX and u =I @,,. To do this 

we introduce the Legendre potential 

‘p (u, V) = u5 + ur - @ (s, r), z L= vu (u, v), y = qa (24 u) (1.4) 

Applying transformation (1.4) to Eq. (1. l), we obtain for function cp (u, U) the equation 

-J-%u + (Puu + u(P,-l (cpuu %V - CPU,“) = 0 (1.5) 

By analogy with the form of solution in the physical plane [l] it is reasonable to 
seek the solution of Eq. (1.5), which defines the transonic stream at some distance from 

the body, in the form al 

‘p(u, V) = ‘po(u, v) + ‘pl(U, v), ‘pi (ZL, V) = 2 c,$& (rl) vak, rl == $ (1.6) 
k=l 

Using the parametric representation of function f,, (E) [5 - 71 

f,, = 8.9-V/7 (6+3s - 2s2), E = s-*i? (1-2s) 

we pass to the selection of new hodograph variables. 

In the considered approximation s = 0 corresponds to the axis of symmetry r = 0, 
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and S --- e/5 to the limit characteristics. As in 121 we introduce the new variable 

(2-%r@ -(ill zz exp o (I. 7) 

In the considered region, i.e. for considerable r, exp u is small (o -+ -co).Taking 
into consideration (1.7) for the perturbed velocity components which correspond to solu- 
tion (1.2) we obtain 

u = 2.3-l (s - 1) exp o, v = 2.9-is’it (2s _ 3) enp (3a / 2) 0.8) 

We shall consider Eqs. (1.8) as transformation formulas from the hodograph variables 
U and u to the new independent hodogranh variables s and o. The Jacobian of this 

transformation shows that there is a one-to-one correspondence between variables u and 

UV and S and o If variables s and IS are substituted for u and u by formulas (1.8)) 
the variable q = ua / ~2 is a function of only s, and the Legendre potential expansion 

(1.6) assumes the form 

cp (s, o) = ‘PO Co) + 91 (s7 4 

(1.9) 

(~~(5) = coexp(a /3), ‘pl (S, a) = 5 ckexp(vko)Xk(s) 

k=l 

The first term in the right-hand part of the first formula (1.9) is the principal term 

which determines in the hodograph plane the law of attenuation of perturbations induced 
in a uniform sonic stream by a body of revolution. The second Ferm takes into account 

the flow field variation induced by the deviation of the unperturbed stream velocity from 

the speed of sound. 

It is assumed that in the considered region 1 (pi (s, cr) 1 < ( ‘p. (CJ) 1 . However 
at infinity in the physical plane (1. --f 00, o -+ -00) function cpi must exceed the 

principal term, since otherwise the continuation of solution ‘p (s, a) into infinity would 

yield a stream with sonic velocity at infinity. The last condition imposes on the selec- 

tion of the range of vk the following restriction 

**. < vk < vk-i < . . . < vi ( Ii3 (1.10) 

Furthermore we shall consider only negative values of vk, since at a considerable distance 

from the body the predominant part in the first formula (1.9) is played by terms contain- 

ing negative vk. Equation (1.5) after the introduction in it of the new independent vari- 

ables s and o assumes the form 

9.2-A (2s - 3) (cp,,cpbO - cpso”) - 9.2-l s (s - 1) (3s - 4) x (1.11) 

cpscpss + 9s (3s - 4) cpscpsa t- 27.2-l (s - 1) cpsrp,,o -; 

9.2% (s - l)cp,cp,,-9scpocp,o - 27.2~‘(p,rp,, $- 9.2-l (-Gs2 -{- 

9s - 2j(F; + 9.2-l (3s - 1) cpsqIa /- 9.2~‘(PO2 f Ii (cp. cp) -= 0 

which is accurate to within the multiplier s’/* exp (- 7o / 2) which is neglected be - 

cause in the investigated region it is nonzero. 
It will be seen from (1.11) that the nonlinear operator R (cp, ‘p) is the finite sum of 

quadratic operators Ri” (q, vi) 

R (qh cp) = XRik (cp, cp) = 2 1: (9) Lk (cp) 
i, k i. k 
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where Li (cp) and Lk Irp) are linear operators which obviously do not contain the vari- 
able o. Substituting into the operator R function cp (s, o) from the first formula of 
(1.9) and allowing for the linearity of operators Li (cp) and Lk (v), we obtain 

R (cp,, + rpi, cp,, + cpi) = R (cpo, cpo) + T (rpo, cpt) + R (vi, (Pi) (1.12) 

T (cp,,, cpl) = 2 2-l IL* (cpo) Lk (%) + Li (%)Lk (%)I 
i. k 

where T (cpo, qpi) denotes the part of operator R (Q, _I- (pi, ‘p. $ cpi), which remains 
after the elimination from it of operators R (cpo, q+,) and R (cpi, vi). FunctionTO 
is the solution of the transonic approximation of the equation for the Legendre potential, 

hence in formula (1.12) R (cpo, cp,J z 0 and Eq. (1.11). after substitution into it of 

solution (1.9) assumes the form 

i ckT (cO exP (6 / 3), xk (s) exp (vka)) = 

k=l 

(1.13) 

- i i ‘?cclR (xk (d exP (v,;Q), Xl (a) exP (v,b)) 
k=l I=1 

A direct substitution will prove that operators T and 12 in Eq. (1.13) are 

T (Co eXp (0 / 3), Xk (S) eXp (vg)) = eXp [(l/3 $ vk) 01 L (Vkr xk (‘1) (1.14) 

R (Xk (S) eXp (vk(J), Xl (S) eXp (v&) = eXp \(v, + vl) 01 p (vk, vZ~ xk, xl) 

where L and P denote the linear and the quadratic differential operators, respectively. 

Substituting expressions (1.14) into Eq. (1.13) and multiplying by exp (-_o / 3) , we 
obtain the latter in the form 

i c& (vk, xk (s)) exp (vkd = - i i wlp (% % xk (h xl (d) x tl. 15) 

k=l k=l1=1 

exp (vk. lo), @,I = - + __I_ v/i + v1 

Note that from all terms of this equation containing function Xk (s) (for some fixed k). 

the term in the left-hand part contains exp o of the lowest power. Collecting in Eq. 
(1.15) terms with equal coefficients exp ai u and equating these to zero, we obtain 
the equation for determing function Xi (s). Two alternatives may be possible for each 

Ic,viz. (1.16) or (1.17) 

L (vk, Xk (s)) = 0 (1.16) 

ck L (vkt xk ($) = -c,c,p cv,, vnt Xm cs), Xn ts)) (1.17) 

Equation (1.17) is valid if ~“‘7~ = - l/s -/- v, f y,, in the index of the exponent in 
the right-hand part of Eq. (1.15) is the same as some index in the left-hand part of the 
equation. Taking into consideration that all vk are negative, we conclude that 1 v"yn 1 

is always greater than the absolute value of those v from which vmvn are formed.The 
right-hand part of Eq. (1.17) contains functions xmand &with subscripts m, n < k, 

hence (for fixed k) it is at every stage a known function of S. 
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We denote by vgi the values of parameters v for which the homogeneous equation 
(1.16) is solvable, and by v,, . . . , vk, . . . the ordered set consisting of numbers yoi 

and vmvn arranged according to their increasing absolute values. 

Solving Eq. (1.16) with related boundary conditions represents a problem of eigenva- 

lues. Equation (1.17) is nonhomogeneous and can be solved when vmyn are not eigen- 

values of the corresponding homogeneous problem. 

Let us now pass to the determination of eigenvalues of Eq. (1.16). Using the defini- 

tion of operator L appearing in (1.14) we find that Eq. (1.16) has the form of the hyper- 

geometric differential equation 

I, (Y, xv (s)) -~ 2-‘{s (5s - 6)x” (s) -t- 6x’ (s) 1s (2 - Y) - (1.18) 

11 -I- 3x (s) v (l--3$} :m 0 

For solving this equation we use for boundary conditions the reasonable assumption of the 
absence of solution singularity at singular points s =- 0 and s/s to which in the phy- 
sical plane correspond the axis of flow symmetry and the limit characteristic. The pro- 

cess of determining eigenvalues and eigenfunctions of Eq. (1.18) is described in detail 

in [2], where it is applied to the problem of flow of a sonic gas stream past a body of 

revolution. Eigenvalues of Y lying to the right of point 11, along the number axis were 
also determined in that paper. Unlike in that problem, here we are interested in that 

part of the range of eigenvalues Y which lies to the left of point l/, along the numer 

axis, i. e, the part which satisfies condition (1.10). 
The solution of Eq, (1.18) is a hypergeometric function which is regulat at the point 

s -z: ‘1, for the following values of v : 

v0i = --G-‘l2i - 1 -+ (24i2 + 24i + 1)‘112], i = f, 2,... (1.19) 

Formula (1.19) determines the eigenvalues of Eq.(l. 18). For these values of v the hyper- 

geometric series which are eigenfunctions Xi (s) degenerate into polynomials. The de- 

rived eigenvalues voi are not sufficient for obtaining the sought expansion of the Legen- 
dre potential in powers of exp o, since in the series calculated by formula (1.19)values 
of vm+ are wedged-in between values of voi. Functions x”,” (s) corresponding to 

these are to be determined by the solution of the nonhomogeneous equation (1.17) with 

boundary conditions for the regularity of solution at points o =: 0 and (i/5. 
We pass to the computation of vm,?l. We have 

$,I _ 
--‘I, + 2v,, 

Owing to the validity of inequalities 

Iv011 ( Iyo21 -=E lyl,ll c Iyo31 

we assign to vl, v2 and va the following values: 

VI == vor, vz = Yo2, vs = y , = ll-_l/ 
3 -t 2VOl (1.20) 

According to the definition of vrn3n 

+,2 ~ .- -l/3 + v1 + v2, A3 = --l/3 + VI -I- v3, v272 7-x --1/3 + 

2v2, 
y2,3 1 --l/3 + v2 + v3, y3,3 _- _-1/ 3 -t- XV3 

Absolute values of these quantities satisfy the inequalities 
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Because of this we can extend sequence (1.20) as follows: 

y4 = yo3, v5 = vl? G 
-l/3 + YOl + YfJ.2, 

3VCllY 

ye = yl,3 c --2/3 + 

v7 = vo4 

In solving Eq. (1.17) it is reasonable to assume that 

ck - cmcn (1.21) 

Equation (1.17) now assumes the form 

I; (yW, X”!” (s) =- - p (Xm (S)l Xn (s) ) (1.22) 

whose right-hand side is a known function in the form ofa polynomial. Using this con- 

dition it is possible to show by the method of induction [2] that functions x”,‘” (s) which 

satisfy Eq. (1.22) are also polynomials. 
For the derived v,,. the expansion of the Legendre potential (1.9) is of the form 

Cp (s, 0) == co eslj (a/3) -;- clxl (s) esp (~~~(7) + c2xz (s) exp (v~~o)L- (1.23) 

csxa (a) exp 1(-V, -t ho&d -t c4x4 (4 eq (v,,o) + 
c55x5 (s) exp.l(--- li, -I- vol t- vg?) 01 + c&S (s) exp i(-2/3 + 

3v,,) ~1 + c7x7 (s) esp (vop) -I-- . . . 

where the indices vgi are determined by formula (1.19). In this expansion all functions 
Xi (S) are known polynomials. Some of the constants ci, namely those which in expan- 

sion (1.23) appear at the eigenfunctions of the homogeneous equation (1.16) are arbit- 
rary and have to be determined by the boundary conditions of a specific problem. Re- 
maining constants appearing in terms originating from the nonhomogeneous equation 

(1.17) must be determined by formula (1.21). 
Let us pass in expansion (1.23) from the variables s and o to variables q and C, 

using for this the transformation formulas (1.8). For the variable 11 we obtain 

q 7 $/us = Gs-’ (s - 1)“(2s - 3)-T 

which shows that ‘r~ depends only on the variable 8 . Hence Xi (s) are functions of the 
variable rl. Using one of the formulas (1. 8) we obtain 

e?rp tvkc) _ g”.‘“,;. z-’ Jv~L;2~Sy~s-‘i3y~ (as _ 3)-5’3”k 
(1.24) 

Taking into account that s = s (11) and substituting in expansion (1.23) expression 
(1.24) for the various powers esp o , we obtain 

V, cs, o) - V cl?, v) = coQo tr\) u*‘9 t- clQl (q) V*‘J~JO~ i- c2Q2 (way02 4- (1.25) 

c:3Q3 (T))Vz,‘d-’ ~t+zvod + c4Q4 (~)v’.‘~“o~ + c5Q5 (~)v~~J(-‘~J+~~~+~~~) + 

csQR (q) v”“(- *.‘s+svol) -1 c,Q, (q) r,? V’M $- . . . 

Qh. (q) = !1.2- lS-“k:3 (2s - 3)-V? Xk (a) 

Owing to the method of its derivation, solution (1.25) is regular along the limit charac- 
teristic, hence it can be analytically continued over that characteristic. Whether this 
regularity of solution is maintained in its mapping onto the physical flow plane is not 
clear. This aspect is investigated below. 



2, Let us apply the solution derived in [ 11 in variables of the physical plane. We 
recall that we seek a solution of the K&m&r equation (1.1) in the form (1.3). Substi- 

tuting the sum (1.3) into Eq, (1.1) and linearizing the equation for 1 @t f < 1 @,, 1 , 

we obtain for function @i(s, r) a homogeneo~ linear equation of the second order. 
The solution of this equation is sought in the form of series 

m 

where cmi are constants. The solution of the problem of eigenvalues yielded in [l] the 

formula for indices wi 

wi = 7-t (2i - 1 + A,), Ai = (24i2 + 24i + I)‘%, i = 1,2 .., (2.2) 

and a system of functions fo, (t) which ensure the continue of velocity and other pa- 

rameters along the x-axis and the limit characteristic (such functions are called natural). 

It was also shown that functions foi (Q are polynomials. 

Let us map the physical flow plane onto the hodograph plane. For this we expandva- 

riables LZ and r into series in self-similar functions in hodograph variables. In accord- 
ance with (1.2), (1.3) and (2.1) the perturbation velocity components are defined in the 

physical plane by 

(2.3) 

u _ a@ - r--tj7 
ar [G,,(E) + rol”*“G1 (E) + r”+*“G, (E) + . ..I 

Using (2.3) and (2.4), for the self-similar variable 11 we obtain the expansion 

H,(E) r~*+*;~ + H, (Q r~~+~~+% f Ha (E) ~~(~ti*~,) + . . , ] 

In virtue of (2.4) the variable r can be represented in the form 
m 

r = a0 (5) u-?‘o -t rl (E, u), rl (5, u) = 2 u,~(~J vmdk (2.6) 
k=1 

where a0 (6) u-‘p is the principal term and the sum r, (E, v) in the considerd region 

is small in comparison with the principal term, To determine exponents fir we substi- 

tute expansion (2.6) into the ~ght-hand part of formula (2.4). Using the condition of 

equality of the right- and left-hand parts of the derived identity, we determine success- 
iualy all exponents &. The expansion of r in powers of u then assumes the form 

However this is not the final expansion, since the coefficients depend on the variable E 
and not on the hodograph variable. The expansion of E in hodograph variables is deri- 
ved below. 

The substitution of (2.7) into formula (2.5) yields 

9 = ho (~1 + hl (g) u-‘/,(wt+*/;) + hz (E) u-‘1d-+z/7) + h3 (E) u-“‘~(~~+‘,‘~) + (2.8) 
h4 (c) ~-‘dW*~7) + h, (E) u-4’;-)/&,+‘O’) + h, (5) u-%h+‘~‘) + . . . 
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h, (E) = Fo3 (0 Go-” (8 (2.9) 

Taking into consideration expansion (2.8) we represent E in the form 

(2.10) 

where h,-1 denotes the inverse of operatoqh 0. Function &, (q) is the principal term 

in the expansion (2.10). and function E1 (q, V) is assumed to be small in comparison 

with 5s (7) - To determine exponents yi we substitute expression (2.10) into the right- 

hand part of expansion (2.8). We note that the variable E appears in (2.8) only as the 

argument of functions ho (E), hr (E), . . . The values of these functions at point E de- 

fined by formula (2.10) can be determined by expanding them into Taylor series in the 

neighborhood of point E,, 

h++ ~gk(q)U’I)=hi(Fo)+h,l(Eo)~g1.(9)Vyk+... (i=O,i*2), (2.11) 

k=l 
k=l 

with 
h, (&J = ho (ho-’ (rl) ) = ‘1 (2.12) 

Comparison of the left-and right-hand parts of expansion (2.8) with allowance for (2.11) 

and (2.12) successively yields exponents yl, ys, . . . . The expansion of E in the ho- 

dograph plane now assumes the form 

E = /&;l (q) + bl (q) ,-'MY+*M + b2 @) ,-'w~+'M + & (q) ,-"~~@l+*'d + (2. 13) 

b4 tq) ,-‘l&%t’/d + b, (rl) f’h-‘h(*t~~) + jj6 (q) v-n/~~l+*/7J _f_ . . . 

Using a formula similar to (2.11) we expandin formula (2.7) the operators a,, al, . . . 
for E defined by formula (2.13) and for the expansion of r in hodograph variables we 

finally obtain 

r = R, (r,) V-“* + R1 (q) u-‘-‘:*~~ + R, (q) ~+‘+’ + & (Tl) U-l”‘-y’*’ + (2.14) 

R,(r,) u-1-',',o3 + ~~(~)~-""'l'("'+"') + R6(rl)VFW/*-Z'/*(61 + ... 

The object of these transformations is to obtain an asymptotic expansion of the Legendre 
potential in the hodograph plane by using the known solution in the physical plane. As 
implied by formula (1.4) to do this it is necessary in addition to the expansion of r to 
have the expansion of the variable 1c and of the -perturbed velocity potential @ in the 
hodograph plane. We omit the cumbersome computations and present these expansions 

in their final form 

E, (q) u-~‘~’ + E, (q) u-‘~*-“~sOl + E, (q v-7/w3 + E, (,,) v-%-‘/dwo,)+ 

Es (q) r~-“l’-~“~~~ + . . . 
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Formulas (2.14) and (2,15) make it possible to present the expansion of the Legendre 
potential in the form 

This expansion is the result of mapping onto the hodograph plane the solution which 

in the physical plane of flow is regular along the limit characteristic. Let us compare 

it with the similar expansion of the Legendre potential (1.25) obtained by solving the 

problem in hodograph variables. 

It will be seen from formulas (1.3 9) and (2.2) that the relationship between exponents 
vgi and oi is defined by 

vfli -- - Ti(0i/l(j. i Ii,“,... (2.17) 

which shows that exponents at the variable v in expansions (1.25) and (2.16) are the 

same. Condition (2.17) and the law of formation of exponents of series (2.16) which 

was obtained from the condition of solution regularity at the limit characteristic of the 

physical plane make it possible to conclude that solution (1.25) has also the property 
of regularity. 

Note that the asymptotic representation of the velocity potential (1.3) derived in [l] 
by linearizing the I&m&t equation with respect to function d), (s, r) was used above, 

It appeared, however,that this solution mapped onto the hodograph plane is of the same 
form as (1.25) which was obtained by solving the nonlinearized equation which is an 

exact analog of the K&man equation for the Legendre potential. 

If the terms which are nonlinear with respect to function (D, (s, r) were taken into 
account in the K&m& equation (1.1). terms containing r in power 2~0, + ‘/,, 6.1~ i- 
02 + v7, . . . (these additional exponents are formed according to the law ~“1~ = 

w, $- o, + 2/,) would appear in the asymptotic formula (2. I). However this solution 
mapped onto the hodograph plane is also of the form (2.16) the only difference being 

in the coefficients a,, Qs, Qs, . . . . 
The conformity of solutions in the physical and the hodograph planes of the problem 

of flow of a sonic stream of gas past a body of revolution was established in [8-J. 
In conclusion the author expresses her sincere appreciation to O.S. Ryzhov for the valu- 

able advice and discussions. 
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Dependence of the pattern of variation of gas parameters on the deviation ofthe 

oncoming stream velocity from sonic is established as the result of investigation 

of flow at great distances from bodies of revolution. This dependence makes it 
possible to determine the law of drag variation at transonic speeds, which is con- 

firmed by calculations presented here. 
The weak effect of the oncoming stream velocity on the deviation of parame- 

ters at the body upstream of the compression shock from their values at sonic 

speed at infinity is a property of transonic flows, known as the law of stabiliza- 

tion. It was discovered experimentally and expounded in [1] for plane flows. 
The relation of the stabilization law to the pattern of the stream at great distan- 
ces upstream of a compression shock was established in [2. 31. In the first of 

these the assumption is made that the drag is weakly dependent also on the velo- 

city at infinity, which is not supported by experimental data. The latter reveal 

a rapid motion of the compression shock toward the body trailing edge, when 

the velocity of the oncoming stream approaches the speed of sound. For constant 

parameters upstream of the shock the drag is affected not only by the motion of 
the shock itself, but also by parameters downstream of it. For the determination 
of the dependence of the drag of a body on the oncoming stream velocity, it is, 

consequently, necessary to investigate the flow downstream of the shock. 

1. Let us briefly state the properties of sonic flows at great distances from a body of 
revolution. which will be required subsequently. They were investigated in [4 - 111 and 
provide a fairly complete picture of the flow as a whole. In particular, they clarify the 
nature of incipient formation of drag of a body at sonic velocity. 

Since investigations [4 - 111 imply that at great distances from a body the compres- 
sion shock intensity is low, hence there exists a velocity potential which can be repre- 


